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Abstract.  Itis common to use domain speci ¢ terminology { attributes
{to describe the visual appearance of objects. In order to scale the use of
these describable visual attributes to a large number of categories, espe-
cially those not well studied by psychologists or linguists , it will be neces-
sary to nd alternative techniques for identifying attribu te vocabularies
and for learning to recognize attributes without hand label ed training
data. We demonstrate that it is possible to accomplish both t hese tasks
automatically by mining text and image data sampled from the Internet.
The proposed approach also characterizes attributes accoding to their
visual representation: global or local, and type: color, te xture, or shape.
This work focuses on discovering attributes and their visua | appearance,
and is as agnostic as possible about the textual description

1 Introduction

Recognizing attributes of objects in images can improve olgct recognition and
classi cation as well as provide useful information for orgnizing collections of
images. As an example, recent work on face recognition has alvn that the
output of classi ers trained to recognize attributes of faces { gender, race, etc.
{ can improve face veri cation and search [1, 2]. Other work has demonstrated
recognition of unseen categories of objects from their degption in terms of
attributes, even with no training images of the new categories [3, 4] { although
labeled training data is used to learn the attribute appearances. In all of this
previous work, the sets of attributes used are either consticted ad hocor taken
from an application appropriate ontology. In order to scalethe use of attributes to
a large number of categories, especially those not well stield by psychologists
or linguists, it will be necessary to nd alternative techni ques for identifying
attribute vocabularies and for learning to recognize theseattributes without
hand labeled data.

This paper explores automatic discovery of attribute vocahularies and learn-
ing visual representations from unlabeled image and text d& on the web. For
example, our system makes it possible to start with a large nmber of images
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Fig. 1. Original inputimage (left), Predicted attribute classic ation (center), and Prob-
ability map for localization of \high,heel" (right { white i  ndicates high probability).

of shoes and their text descriptions from shopping websitesind automatically
learn that \stiletto" is a visual attribute of shoes that ref ers to the shape of
a speci c region of the shoe (see Fig 6). This particular exarple illustrates a
potential di culty of using a purely language based approach to this problem.
The word \stiletto" is a noun that refers to a knife, except, of course, in the
context of women's shoes. There are many other examples, \tlm" can be a
homeless person or a type of handbag (purse), \wedding" canéda visually dis-
tinctive (color!) feature of shoes, \clutch" is a verb, but also refers to a type
of handbag. Such domain speci ¢ terminology is common and pges di culties
for identifying attribute vocabularies using a generic language based approach.
We demonstrate that it is possible to make signi cant progress by analyzing the
connection between text and images using almost no languag&peci c analysis,
with the understanding that a system exploiting language aralysis in addition
to our visual analysis would be a desireable future goal.

Our approach begins with a collection of images with assoctad text and
ranks substrings of text by how well their occurence can be prdicted from
visual features. This is di erent in several respects from he large body of work
on the related problem of automatically building models for object category
recognition [5, 6]. There, training images are labeled withthe presence of an
object, with the precise localization of the object or its parts left unknown. Two
important di erences are that, in that line of work, images are labeled with the
name of an object category by hand. For our experiments on dat from shopping
websites, images are not hand curated for computer vision. & example, we do
know the images of handbags in fact contain handbags with no &ckground
clutter, but the text to image relationship is signi cantly less controlled than
the label to image relationship in other work { e.g, it is quite likely that an
image showing a black shoe will not contain the word \black" in its description.
Furthermore there are a range of dierent text terms that refer to the same
visual attribute ( e.g, \ankle strap" and \strappy"). Finally, much of the text
associated with the images does not in fact describe any visih aspect of the
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object (see Fig. 2). We must identify the wheat from amidst a geat deal of
cha.

More related to our work are a series of papers modeling the cmection
between words and pictures [7{10]. These address learnindné relationships be-
tween text and images at a range of levels { including learnig text labels asso-
ciated with speci c regions of images. Our focus is somewhati erent, learning
vocabularies of attributes for particular object categories, as well as models for
the visual depiction of these attributes. This is done starting with more free-
form text data than that in corel [7] or art catalogues [8]. We use discriminative
instead of generative machine learning techniques. Also tis work introduces the
goal of ranking attributes by visualness as well as explorig ideas of attribute
characterization.

The process by which we identify which text terms are visualy recognizable
tells us what type of appearance features were used to recoge the attribute
{ shape, color, or texture. Furthermore, in order to determine if attributes are
localized on objects, we train classi ers based on local sstof features. As a
result, we can not only rank attributes by how visually recognizable they are,
but also determine whether they are based on shape, color, dexture features,
and whether they are localized { referring to a specic part of an object, or
global { referring to the entire object.

Our contributions are:

1. Automatic discovery (and ranking) of visual attributes for speci c types of
objects.

2. Automatic learning of appearance models for attributes vithout any hand
labeled data.

3. Automatic characterization of attributes on two axes: the relevant appear-
ance features { shape, color, or texture { and the localizaHlity { localizable
or global.

Approach:

Our approach starts with collecting images and associatedext descriptions from
the web (Sec 4.1). A set of strings from the text are consider as possible at-
tributes and ranked by visualness (Sec 2). Highly ranked attibutes are then
characterized by feature type and localizability (Sec 3.1) Performance is evalu-
ated qualitatively, quantitatively, and using human evalu ations (Sec 4).

1.1 Related Work

Our key contribution is automatic discovery of visual attri butes and the text
strings that identify them. There has been related work on usng hand labeled
training data to learn models for a predetermined list (either formed by hand or
produced from an available application speci c ontology) d attributes [2{4, 1].
Recent work moves toward automating part of the attribute learning process,
but is focused on the constrained setting of butter y eld guides and uses hand
coded visual features speci c to that setting, language terplates, and prede ned
attribute lists (lists of color terms etc) [11] to obtain vis ual representations from
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Dazzle after dark with Judith Leiber's The 12K pink and green gold leaves Rock and roll in these sexy, strappy heels from Report
decadent oversized crystal-embellished gently cascade down on these delicate Signature. The smoldering Rockwell features a grey patent

silver-tone clutch. Carry this fabulous extra beaded 10K gold earrings.
to add high-octane glamour to an LBD and

teetering heels. Shown here with an Emilio

Pucci dress and Givenchy shoes.

leather upper with pleated satin crossing at the open-toe
atop a 1 inch platform, patent straps closing around the
ankle with a gold buckled, and finally a 5 inch patent cone
heel. Sizzle in these fierce mile-high shoes.

Fig. 2. Example input data (images and associated textual descriptions). Notice that
the textual descriptions are general web text, unconstrain ed and quite noisy, but often
provide nice visual descriptions of the associated product.

text alone. Our goal is instead to automatically identify an attribute vocabu-
lary and visual representations for these attributes withaut the use of any prior
knowledge.

Our discovery process identi es text phrases that can be cosistently pre-
dicted from some aspect of visual appearance. Work from Barard et al, e.g.[9],
has looked at estimating the visualness of text terms by exarming the results of
web image search using those terms. Ferrari and Zissermanden visual models
of given attributes (striped, red, etc) using web image seach for those terms as
training data [12]. Other work has automatically associated tags for photographs
(in Corel) with segments of images [7]. Our work focuses on &htifying an at-
tribute vocabulary used to describe speci c object categoies (instead of more
general images driven by text based web search for a given sef terms) and
characterizes attributes by relevant feature types and loalizability.

As mentioned before, approaches for learning models of aftsutes can be
similar to approaches for learning models of objects. Thesénclude the very
well known work on the constellation model [5, 6], where imags were labeled
with the presence of an object, but the precise localizationof the object and
its parts were unknown. Variations of this type of weakly supervised training
data range from small amounts of uncertainty in precise partlocations when
learning pedestrian detectors from bounding boxes around twle a gure [13]
to large amounts of uncertainty for the location of an objectin an image[14,
5,6,15]. At an extreme, some work looks at automatically idetifying object
categories from large numbers of images showing those cataies with no per
image labels [16,17], but even here, theset of images is chosen for the task.
Our experiments are also close work on automatic dataset catruction [18{
22], that exploits the connection between text and images tocollect datasets,
cleaning up the noisy \labeling" of images by their associagéd text. We start
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Fig. 3. Example input images for 2 potential attribute phrases (\ho ops", and \navy").
On the left of each pair (a,c) we show randomly sampled imagesthat have the attribute
word in their description. On the right of each pair (b,d) we s how randomly sampled
images that do not have the attribute word in their descripti on. Note that these la-
bels are very noisy { images that show \hoops" may not contain the phrase in their
description, images described as \navy" may not depict navy ties.

with data for particular categories, rank attributes by vis ualness, and then go
into a more detailed learning process to identify the appropiate feature type

and localizability of attributes using the multiple instan ce learning and boosting
(MILboost) framework introduced by Viola [23].

2 Predicting Visualness

We start by considering a large number of strings (Sec. 4) asqential attributes

{ for instance any string that occurs frequently in the data set can be considered.
A visual classi er is trained to recognize images whose ass@ted text contains

the potential attribute. The potential attributes are then ranked by their average
precision on held out data.

For training a classi er for potential attribute with text r epresentationX , we
use as positive examples those images wheke appears in its description, and
randomly sample negative examples from those images wheke does not appear
in the description. There is a fair amount of noise in this lakeling (described in
Section 4, see g 3 for examples), but overall for good visuahttribute strings
there is a reasonable signal for learning. Because of the mence of noise in
the labels and the possibility of over tting, we evaluate accuracy on a held out
validation set { again, all of the \labels" come directly fro m the associated, noisy,
web text with no hand intervention.

We then rank the potential attributes by visualness using the learned clas-
si ers by measuring average labeling precision on the validtion data. Because
boosting has been shown to produce accurate classi ers withood generalization,
and because a modi cation of this method will be useful laterfor our localizabil-
ity measure, we use AnyBoost on decision stumps as our clagsation scheme.
Whole image based features are used as input to boosting (sdc2 describes the
low level visual feature representations).
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2.1 Finding Visual Synsets

The web data for an object category is created on and collecte from a vari-
ety of internet sources (websites with di erent authors). T herefore, there may
be several attribute phrases that describe a single visual tribute. For exam-
ple, \Peep-Toe" and \Open-Toe" might be used by di erent sources to describe
the same visual appearance characteristic of a shoe. Each dfese attribute
phrases may (correctly) be identied as a good visual attribute, but their re-
sulting attribute classi ers might have very similar behavior when applied to
images. Therefore, using both as attributes would be redunadnt.

Ideally, we would like to nd a comprehensive, but also compat collection
of visual attributes for describing and classifying an objet class. To do so we
use estimates of Mutual Information to measure the informaton provided by a
collection of attributes to determine whether a new attribute provides signi -
cantly di erent information than the current collection, o ris redundant and can
therefore might be considered a synonym for one of the attrintes already in the
collection. We refer to a set of redundant attributes providing the same visual
information as a visual synsetof cognitive visual synonyms. To build a collection
of attributes, we iteratively consider adding attributes t o the collection in order
by visualness. They are added provided that they provide sigi cantly more mu-
tual information for their text labels than any of the attrib utes already in the
set. Otherwise we assign the attribute to the synset of the atribute currently in
the collection that provided the most mutual information. T his process results
in a collection of attribute synsets that cover the data well, but tend not to be
visually repetitive.

Example Shoe Synsets

f\sandal style round", \sandal style round open", \dress san dal", \metallic" g
f \stiletto", \stiletto heel", \sexy", \traction", \fabulo us", \styling" g
f\running shoes", \synthetic mesh", \mesh", \stability", \ nubuck”, \molded"... g
f\wedding", \matching", \satin", \cute" g
Example Handbag Synsets
f\hobo", \handbags", \top,zip,closure”, \shoulder,bag", \hobo,bag” g
f\tote", \handles", \straps", \lined", \open"... g
f \mesh", \interior", \metal" g
f \silver", \metallic" g

Alternatively, one could try to merge attribute strings bas ed on text analysis
{ for example merging attributes with high co-occurence or matching substrings.
However, co-occurence would be insu cient to merge all waysof describing a
visual attribute, e.g., \peep-toe" and \open-toe" are two alternative descriptio ns
for the same visual attribute, but would rarely be observed n the same textual
description. Matching substrings can lead to incorrect meges,e.g. \peep-toe"
and \closed-toe" share a substring, but have opposing meanigs. Our method for
visual attribute merging based on mutual information overcomes these issues.

3 Attribute Characterization

For those attributes predicted to be visual, we would like to make some fur-
ther characterizations. To this end, we present methods to étermine whether
an attribute is localizable (Section 3.1) { ie does the attribute refer to a global
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Fig. 4. Automatically discovered handbag attributes, sorted by vi sualness.

appearance characteristic of the object or a more localizedppearance charac-
teristic? We also provide a way to identify attribute type (S ection 3.2) { ie is
the attribute indicated by a characteristic shape, color, a texture?

3.1 Predicting Localizability

In order to determine whether an attribute is localizable { whether it usually

corresponds to a particular part on an object, we use a techmjue based on
MILBoost [23,14] on local image regions of input images. If egions with high
probability under the learned model are tightly clustered in the training images
we consider the attribute localizable. Figure 1 shows an exaple of the predicted
probability map on an image for the \high heel" attribute and our automatic

attribute labeling.

MILBoost is a multiple instance learning technique using AryBoost, rst
introduced in Viola et al [23] for training face detectors, and later used for other
object categories [14]. MILBoost builds a classi er by incementally selecting
a set of weak classi ers to maximize classi cation performace, re-weighting
the training samples for each round of training. In the end e&h bag receives a
probability under the model, as does each sample. Becausedhext descriptions
do not specify what portion of image is described by the attrbute, we have a
multiple instance learning problem where each image (datatem) is treated as a
bag of regions (samples) and a label is associated with eachmage rather than
each region.
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Fig.5. Automatically discovered shoe attributes, sorted by visua Iness.

If i indexes images, and indexes segments and the boosted classi er pre-
icts the score of a sample as a linear combination of weak daiers: y; =
. tC'(Xj ). Then the probability that segment j in imagesi is a positive ex-
ample is 1
. = 1
pIJ 1+ eXp( yIJ ) ( )

The probability of an image being positive is then (under thenoisy OR model),
one minus the probability of all segments being negative.
Y

p=1 1 pj) 2)
j2i

Following the AnyBoost technique, the weight, w; assigned to each segment is
the derivative of the cost function with respect to a change n the score of the

segment (wheret; is the label of imagei 2 0; 1):

t. .
' o P Pi 3

Wij =
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P
Each round of boosting selects the weak classi er that maxinzes: c(Xij. Wij ),
where c(x; ) is the score assigned to the segment by the weak “classi er an

c(xj) 2 1,+1. The weak classi er weight parameter, . is determined using
line search to maximize the log-likelihood of the new combied classi er at each
iteration t.

Localizability of each attribute is then computed by evaluating the trained
MILBoost classi er on a collection of images associated wh the attribute. If the
classi er tends to give high probability to a few speci ¢ regions on the object (.e.,
only a small number of regions have largd®; ), then the attribute is localizable.
If the probability predicted by the model tends to be spread across the whole
object then the attribute is a global characteristic of the object. To measure
the attribute spread, we accumulate the predicted attribute probabilities over
many images of the object and measure the localizability astte portion of image
needed to capture the bulk of this accumulated probability (the portion of all
Pj 's containing at least 95% of the predicted probability). If this is a small
percentage of the image then we predict the attribute as lockzable. For our
current system, we have focused on product images which tentb be depicted
from a relatively small set of possible viewpoints (shoe paited left, two shoes
etc). This means that we can reliably measure localization o a rough xed grid
across the images. For more general depictions, an initialtep of alignment or
pose clustering [24] could be used before computing the lokizability measure.

ij

3.2 Predicting Attribute Type

Our second attribute characterization classi es each visal attribute as one of 3
types: color attributes, texture attributes and shape attr ibutes. Previous work
has concentrated mostly on building models to recognize cot (e.g. \blue")
and texture (e.g., \spotty") based attributes. We also consider shape based &
tributes. These shape based attributes can either be indidars of global object
shape €.g. \shoulder bag") or indicators of local object shape .9, \ankle
strap") depending on whether they refer to an entire object o a part of an
object. For each potential attribute we train a MILBoost cla ssi er on three dif-
ferent feature types (color, texture, or shape { visual repesentation described
in Section 4.2). The best performing feature measured by avage precision is
selected as the type.

4 Experimental Evaluation

We have performed experiments evaluating all aspects of ounethod: predicting
visualness (Section 4.3), predicting the localizability Section 4.4), and predicting
type (Section 4.4). First we begin with a description of the data (Section 4.1),
and the visual and textual representations (Section 4.2).

4.1 Data
We have collected a large data set of product images from thenternet* depict-
ing four broad types of objects: shoes, handbags, earringand ties. In total we

4 speci cally from like.com, a shopping website that aggregates product data from a
wide range of e-commerce sources
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Fig. 6. Attributes sorted by localizability. Green boxes show most probable region for
an attribute.

have 37795 images: 9145 images of handbags, 14765 imageshokes, 9235 im-
ages of earrings, and 4650 images of ties. Though these imageere collected
from a single website aggregator, they originate from a vaety of over 150 web
sources €.g., shoemall, zappos, shopbop), giving us a broad sampling ofious
categories for each object type both visually and textually(e.g. the shoe images
depict categories from ats, to heels, to clogs, to boots). These images tend to
be relatively clean, allowing us to focus on the attribute discovery goal at hand
without confounding visual challenges like clutter, occlision etc.

On the text side however the situation is extremely noisy. Beause this general
web data, we have no guarantees that there will be a clear retionship between
the images and associated textual description. First therewill be a great number
of associated words that are not related to visual propertis (see g 2). Secondly,
images associated with an attribute phrase might not depictthe attribute at
all, also, and quite commonly, images of objects exhibitingan attribute might
not contain the attribute phrase in their description (see g 3). As the images
originate from a variety of sources, the words used to desdre the same visual
attribute may vary. All these e ects together produce a great deal of noise in
the labelingthat can confound the training of a visual classi er.
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Fig. 7. Quantitative Evaluation: Precision/Recall curves for som e highly visual at-
tributes, and other less visual attributes for shoes (left) and handbags (right).

4.2 Representations

Visual Representation:  We use three visual feature types: color, texture, and
shape. For predicting the visualness of a proposed attribud we take a global
descriptor approach and compute whole image descriptors fanput to the Any-
Boost framework. For predicting localizability and attrib ute type, we take a local
descriptor approach, computing descriptors over local sulvindows in the image
with overlapping blocks sampled over the image (with block &ze 70x70 pixels,
sampled every 25 pixels).

Each of our three feature types is encoded as a histogram (ieggrated over
the whole image for global descriptors, or over individual egions for local de-
scriptors), making selection and computation of decision simps for our boosted
classi ers easy and e cient. For the shape descriptor we utlize a SIFT visual
word histogram. This is computed by rst clustering a large set of SIFT descrip-
tors using k-means (with k = 100) to get a set of visual words. For each image,
the SIFT descriptors are computed on a xed grid across the inage, then the
resulting visual word histograms are computed. For our colo descriptor we use
a histogram computed in HSV with 5 bins for each dimension. Fnally, for the
texture descriptor we rst convolve the image with a set of 16 oriented bar and
spot lters [25], then accumulate absolute response to eactof the Iters in a
texture histogram.

Textual Representation: On the text side we keep our representation very
simple. After converting to lower case, removing stop wordsand punctuation,
we consider all remaining strings of up to 4 consecutive worslthat occur more
than 200 times as potential attributes.

4.3 Evaluating Visualness Ranking

Some attribute synsets are shown for shoes in gure 5 and fordndbags in g-
ure 4, where each row shows some highly ranked images for ant@bute synset.
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Human Evaluation for Earring Attributes
Human Based Classification

Visual Attributes: "basket,setting", "solitaire,stud", "earring, studs,crafted", "heart", "screw,back",
"princess","rating", "natural", "diamond,stud", "comes"

Non-Visual Attributes: "measure", "cz", "measures"”, "dangle", "quality", "anything,favorite,
woman", "hoops", "outfit", "piece", "S5mm"
Our Classification

Visual Attributes: "earring,studs,crafted", "screw,back", "rating", "solitaire,stud", "basket,setting",
"anything,favorite,woman", "hoops", "princess","diamond,stud", "heart"

Non-Visual Attributes: "natural", "comes", "quality", "dangle", "5mm","piece", "cz", "outfit",
"measure", "measures"

Fig. 8. Attributes from the top and bottom of our visualness ranking for earrings as
compared to a human user based attribute classi cation. The user based attribute
classi cation produces similar results to our automatic me thod (80% agreement for
earrings, 70% for shoes, 80% for handbags, and 90% for ties).

For shoes, the top 5 rows show highly ranked visual attributes from our collec-
tion: \front platform", \sandal style round", \running sho e", \clogs", and \high
heel". The bottom 3 rows show less highly ranked visual attrbutes: \great",
\feminine", and \appeal". Note that the predicted visualne ss seems reasonable.
This is evaluated quantitatively below. For handbags, attributes estimated to be
highly visual include terms like \clutch", \hobo", \beaded ", \mesh" etc. Terms
estimated by our system to be less visual include terms like look", \easy",
\adjustable" etc.

The visualness ranking is based on guantitative evaluation of the classi-
ers for each putative attribute. Precision recall curves on our evaluation set for
some attributes are shown in gure 7 (shoe attributes left, handbag attributes
right). Precision and recall are measured according to how @il we can predict
the presence or absence of each attribute term in the imagesxtual descrip-
tions. This measure probes both the underlying visual cohegnce of an attribute
term, and whether people tend to use the term to describe objets displaying
the visual attribute. For many reasonable visual attribute s our boosted classi er
performs quite well, getting average precision values of & for \front platform",
91% for stiletto, 88% for \sandal style round”, 86% for \runn ing shoe" etc. For
attributes that are probably less visual the average preci®on drops to 46% for
\supple”, 41% for \pretty", and 40% for \appeal". This measu re allows us to
reasonably predict the visualness of potential attributes

Lastly we obtain a human evaluation of visualness and compare the re-
sults to those produced by our automatic approach. For each bbad category
types, we evaluate the top 10 ranked visual attributes (clasi ed as visual by our
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algorithm), and the bottom 10 ranked visual attributes (cla ssi ed as non-visual
by our algorithm). For each of these proposed attributes we kow 10 labelers
(using Amazon's Mechanical Turk) a training set of randomly sampled images
with that attribute term and without the term. They are then a sked to label
novel query images, and we rank the attributes according to bw well their labels

predict the presence or absence of the query term in the corsponding descrip-
tions. The top half of this ranking is considered visual, andthe bottom half as

non-visual (seee.g., g 8). Classi cation agreement between the human method
and our method is: 70% for shoes, 80% for earrings, 80% for bagand 90%
for ties, demonstrating that our method agrees well with human judgments of
attribute visualness.

4.4 Evaluating Characterization

Localizability: Some examples of highly localizable attributes are shown ithe
top 4 rows of gure 6. These include attributes like \tote", w here MILBoost has
selected the handle region of each bag as the visual represation, and \stiletto"
which selects regions on the heel of the shoe. For \sandal d round" the open
toe of the sandal is selected as the best indicator for this atibute. And, for
\asics" the localization focuses on the logo region of the she which is present
in most shoes of the asics brand. Some examples of more glokatributes are
shown in the bottom 2 rows of gure 6. As one might expect, somdess localizable
attributes are based on color €.g, \blue", \red" etc) and texture ( e.g, \paisley",
\striped").

Type: Attribute type categorization works quite well for color at tributes,
predicting \gold", \white", \black", \silver" etc as color s reliably in each of our
4 broad object types. One surprising and interesting nd is that \wedding" is
labeled as a color attribute. The reason this occurs is that rmny wedding shoes
use a similar color scheme that is learned as a good predictday the classi er.
Our method for predicting type also works quite well for shape based attributes,
predicting \ankle strap”, \high heel", \chandelier", \hea rt", etc to be shape at-
tributes. Texture characterization produces more mixed results, characterizing
attributes like \striped", and \plaid" as texture attribut es, but other attributes
like \suede" or \snake" as SIFT attributes ( perhaps an understandable confu-
sion since both feature types are based on distributions ofriented edges).

5 Conclusions & Future Work

We have presented a method to automatically discover commoattribute terms.
This method is able to reliably nd and rank potential attrib ute phrases accord-
ing to their visualness { a score related to how strongly a sting is correlated
with some aspect of an object's visual appearance. We are ftiver able to char-
acterize attributes as localizable (referring to the appeaance of some consistent
subregion on the object) or global (referring to a global apgarance aspect of the
object). We also categorize attributes by type (color, texture, or shape). Future
work includes improving the natural language side of the syem to complement
the visually dominated ideas presented here.
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