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Abstract

We approach recognition in the framework of deformable
shape matching, relying on a new algorithm for finding cor-
respondences between feature points. This algorithm sets
up correspondence as an integer quadratic programming
problem, where the cost function has terms based on sim-
ilarity of corresponding geometric blur point descriptors
as well as the geometric distortion between pairs of cor-
responding feature points. The algorithm handles outliers,
and thus enables matching of exemplars to query images
in the presence of occlusion and clutter. Given the corre-
spondences, we estimate an aligning transform, typically
a regularized thin plate spline, resulting in a dense corre-
spondence between the two shapes. Object recognition is
then handled in a nearest neighbor framework where the
distance between exemplar and query is the matching cost
between corresponding points. We show results on two
datasets. One is the Caltech 101 dataset (Fei-Fei, Fergus
and Perona), an extremely challenging dataset with large
intraclass variation. Our approach yields a 48% correct
classification rate, compared to Fei-Fei et al’s 16%. We
also show results for localizing frontal and profile faces that
are comparable to special purpose approaches tuned to this
task.

1. Introduction

Our thesis is that recognizing object categories, be they
fish or bicycles, is fundamentally a problem of deformable
shape matching. Back in the 1970s, at least three differ-
ent research groups working in different communities ini-
tiated such an approach: in computer vision, Fischler and
Elschlager [10], in statistical image analysis, Grenander
([12]and earlier), and in neural networks, von der Malsburg
([14] and earlier). The core idea that related but not identi-
cal shapes can be deformed into alignment using simple co-
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ordinate transformations dates even further back, to D’ Arcy
Thompson, in his classic work On Growth and Form [31].

The setup is the following: we have stored multiple ex-
emplars for different object categories, and in the case of
3D objects, multiple 2D views from different poses as well.
Given an image which contains an unknown object (shape),
we compare it to different exemplar shapes thus

1. solve the correspondence problem between the two
shapes,

2. use the correspondences to estimate an aligning trans-
form, and

3. compute the distance between the two shapes as a sum
of matching errors between corresponding points.

Given these distances we can use a nearest neighbor classi-
fier to determine the category of the hitherto unknown shape
in the image.

Practically speaking, the most difficult step is the cor-
respondence problem, e.g. how do we algorithmically de-
termine which points on two shapes correspond? The cor-
respondence problem in this setting is much harder than in
the setting of, say, binocular stereopsis, for a number of rea-
sons:

1. Intra-category variation: the aligning transform be-
tween two instances of a category is not a simple pa-
rameterized transform. It is reasonable to assume that
it is a smooth mapping, but it would be difficult to char-
acterize it by a small number of parameters as in a rigid
or affine transform.

2. Occlusion and clutter: while we may assume that the
stored prototype shapes are present in a clean, isolated
version, the shape that we have to recognize in an im-
age is in the context of multiple other objects, possibly
occluding each other.

3. 3D pose changes: since the stored exemplars represent
multiple 2D views of a 3D object, we could have varia-
tion in image appearance which is purely pose-related,
the 3D shapes could be identical



The principal contribution of this paper is a novel al-
gorithm for solving the correspondence problem for shape
matching.

First, some background. We represent shape by a set
of points sampled from contours on the shape. Typically
50-100 pixel locations sampled from the output of an edge
detector are used; as we use more samples we get better
approximations. Note that there is nothing special about
these points — they are not required to be keypoints such
as those found using a Harris/Forstner type of operator or
scale-space extrema of a Laplacian of Gaussian operator,
such as used by Lowe [18].

We exploit three kinds of constraints to solve the cor-
respondence problem between shapes represented as point
sets:

1. Matching point descriptors: Corresponding points on
the two shapes should have similar local descriptors.
There are several choices here: SIFT [18], Shape con-
texts [3], and Geometric blur[4]. We used geometric
blur.

2. Minimizing geometric distortion: If point 7 corre-
sponds to 7/, and point j corresponds to j’, then the
vector from ¢ to j, 7;; should be consistent with the
vector from i’ to j', 7irj. E.g. if the transformation
from one shape to another is a translation accompa-
nied by pure scaling, then these vectors must be scalar
multiples. If the transformation is a pure Euclidean
motion, then the lengths must be preserved. And so
on.

3. Smoothness of the transformation from one shape to
the other. This enables us to interpolate the transfor-
mation to the entire shape, given just the knowledge of
the correspondences for a subset of the sample points.
We use regularized thin plate splines to characterize
the transformations.

We encode both the similarity of point descriptors and
the geometric distortion in the form of a cost function,
where the minimization is over the space of correspon-
dences. This is then solved as an integer quadratic program-
ming problem (cf. Maciel and Costeira [19]).

We address two object recognition problems, multiclass
recognition and face detection. In the multi-class object
class recognition problem, given an image of an object we
must identify the class of the object and its location in the
image. We use the Caltech 101 object class dataset consist-
ing of images from 101 classes of object: from accordion to
kangaroo to yin-yang, available at [1]. This dataset includes
significant intra class variation, a wide variety of classes,
and clutter. On average we achieve 48 % accuracy on object
classification with quite good localization on the correctly

classified objects. This compares favorably with the state of
the art of 16% from [8].

We also consider face detection for large faces, suitable
for face recognition experiments. Here the task is to detect
and localize a number of faces in an image. The face dataset
we use is sampled from the very large dataset used in [5]
consisting of news photographs collected from yahoo.com.
With only 20 exemplar faces our generic system provides a
ROC curve with slightly better generalization, and slightly
worse false detection rate than the quite effective special-
ized face detector used in [5].

2. Related Work

There have been several approaches to shape recognition
based on spatial configurations of a small number of key-
points or landmarks. In geometric hashing [15], these con-
figurations are used to vote for a model without explicitly
solving for correspondences. Amit et al. [2] train decision
trees for recognition by learning discriminative spatial con-
figurations of keypoints. Leung et al. [16], Schmid and
Mohr [28], and Lowe [17] additionally use gray level in-
formation at the keypoints to provide greater discriminative
power. Lowe’s SIFT descriptor [17] [18] have been shown
in various studies e.g. [22] to perform very well particularly
at tasks where one is looking for identical point features.

Recent work extends this approach to category recogni-
tion [9, 7, 8], and to three-dimensional objects[27].

It should be noted that not all objects have distinguished
key points (think of a circle for instance), and using key
points alone sacrifices the shape information available in
smooth portions of object contours. Approaches based on
extracting edge points are, in our opinion, more universally
applicable. Huttenlocher et al. developed methods in this
category based on the Hausdorff distance [13]; this can be
extended to deal with partial matching and clutter. A draw-
back for our purposes is that the method does not return
correspondences. Methods based on Distance Transforms,
such as [11], are similar in spirit and behavior in practice.
Work based on shape contexts is indeed aimed at first find-
ing correspondences [3, 23] and is close to the spirit of this
work. Another approach is the non-rigid point matching of
[6] based on thin plate splines and “‘softassign”.

One can do without extracting either keypoints or edge
points: Ullman et al propose using intermediate complexity
features, a collection of image patches,[34, 33]

For faces and cars the class specific detectors of [35, 30,
29] have been very successful. These techniques use sim-
ple local features, roughly based on image gradients, and a
cascade of classifiers for efficiency. Recent work on sharing
features [32] has extended to multiclass problems.
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Figure 1: A sparse signal S (a.) and the geometric blur of S
around the feature point marked in red (b.) We only sample the
geometric blur of a signal at small number of locations {s;}, in-
dicated in (b.)

Figure 2: Two images (a. and c.) and four oriented edge chan-
nels derived from the images using the boundary detector of [20]
(b. and d. respectively). A feature point descriptor is the concate-
nation of the subsampled geometric blur descriptor at the feature
point for each of the channels.

3. Geometric Blur Descriptor

We use features based on a subsampled version of the geo-
metric blur descriptor of [4]. This descriptor is a smoothed
version of the signal around a feature point, blurred by a
spatially varying kernel. The amount of blur is small near
the feature point and grows with distance from the feature
point. The intuition is that under an affine transform that
fixes a feature point, the distance a piece of the signal moves
is linearly proportional to the distance that piece was from
the feature point.

When applied to a sparse signal related to the image such
as oriented edge energy channels, the geometric blur de-
scriptor provides a comparison of the neighborhoods around
feature points that is robust to affine distortion. It is impor-
tant to note that the spatial support of the geometric blur
features can be made quite large, and as a result the descrip-
tors can provide useful discriminative information.

In practice the geometric blur of a signal is usually rather
smooth far from a feature point, we take advantage of this
by subsampling the geometric blur, as shown in figure 1.

The experiments in this paper use two types of sparse
channels from which to compute geometric blur descrip-

tors, the oriented edge detector outputs of [20] and oriented
edge energy using quadrature pairs, following [24, 25]. See
Figure 2 for an example. In each case the edge detector is
used to produce four channels of oriented edge responses.
The feature descriptor at a point is then the concatenation
of the subsampled geometric blur descriptor at that point in
each of the channels.

For this work we use a spatially varying Gaussian kernel
to compute geometric blur. Given one of the oriented chan-
nels discussed above as the signal, .S, we compute blurred
versions, Sq = S * G4, by convolving with a Gaussian of
standard deviation d. The geometric blur descriptor around
location g is then

Bio(z) = Saz|+8(T0 — ) (1)

Where « and (3 are constants that determine the amount
of blur. We sample this signal at a sparse set of points
x = s; as shown in figure 1, so we need only compute Sy
for a few distinct values of d = «s;| + (. Since the Gaus-
sian is a separable kernel and we can subsample the signal
for larger standard deviations, extracting geometric blur de-
scriptors is quite fast, taking less than a second per image in
our experiments.

We compare geometric blur descriptors using (L2) nor-
malized correlation.

4. Geometric Distortion Costs

We consider correspondences between feature points {p; }
in image P and {g;} in image Q). A correspondence is a
mapping o indicating that p; corresponds to g, ;). To reduce
notational clutter we will sometimes abbreviate o (i) as ¢/,
SO 0 maps p; to g;.

The quality of a correspondence is measured in two
ways: how similar feature points are to their correspond-
ing feature points, and how much the spatial arrangement
of the feature points is changed. We refer to the former as
the match quality, and the later as the distortion of a corre-
spondence.

We express the problem of finding a good correspon-
dence as minimization of a cost function defined over cor-
respondences. This cost function has a term for the match
quality and for the geometric distortion of a correspon-
dence.

cost(0) = wmCyaich () + wqClistortion ()

Where constants wm and wy weigh the two terms. The
match cost for a correspondence is:

Crnaten(0) = Y c(i, i) )

i
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Figure 3: An exemplar with a subset of feature points marked (left), the novel “probe” image with all feature points in white, and the
Seature points found to correspond with the exemplar feature points marked in corresponding colors (left center), the exemplar with all its
feature points marked in color, coded by location in the image (right center), and the probe with the exemplar feature points mapped by
a thin plate spline transform based on the correspondences, again colored by position in the exemplar (far right). See Figure 9 for more

examples

Where ¢(i, j) is the cost of matching 4 to j in a corre-
spondence. We use the negative of the correlation between
the feature descriptors at 7 and j as ¢(, 7).

We use a distortion measure computed over pairs of
points in an image. This allows the cost minimization to
be expressed as an integer quadratic programming problem.

Cistortion(@) = > _ H(i, 7,4, 5") 3)
i

Where H (i, j, k, 1) is the distortion cost of matching ¢ to
j and k to [ in a correspondence. While there are a wide
variety of possible distortion measures, including the possi-
bility of using point descriptors as well as location, we re-
strict ourselves to measures based on the two offset vectors

iy =pj — pi and sirj = qjr — gir.

Clistortion (@) = Z distortion(r;;, si/j/)
ij

Our distortion cost is made up of two components:

Cistortion(@) = Y 7da(0) + (1 = 7)dj(0) e
ij
dy(o) = <ﬂ + ﬂd) arcsin <M) ‘
7351 |sirjo||7i]
5)
)= Gl T ©

where d, penalizes the change in direction, and d; penal-
izes change in length. A correspondence o resulting from
pure scale and translation will result in d,(c) = 0, while
o resulting from pure translation and rotation will result in
d;(c) = 0. The constants g, 4, jtd, are all related to terms
allowing slightly more flexibilty for nearby points in order
to deal with local “noise” factors such as sampling, local-
ization, etc. They should be set relative to the scale of these
local phenomena. The constant v weighs the angle distor-
tion against the length distortion.

Outliers Each point p;, in P, is mapped to a Qo (i) in
(. This mapping automatically allows outliers in @ as it is

not necessarily surjective — points ¢; may not match to any
point p; under 0. We add an additional point g;;1; and use
o(pi) = qpy to allow a point p; to be an outlier. We limit
the number of points p; which can be assigned to g1, thus
allowing for outliers in both P and Q).

5. Correspondence Algorithm

Finding an assignment to minimize a cost function de-
scribed by the terms in Equations 3 and 2 above can be
written as the objective function for an Integer Quadratic
Programming (IQP) problem.

cost(z) = Z H(a,b)zq,xp + Z c(a)z, @)
a,b a

Where the binary indicator variable x has entries z,, that
if 1, indicate o(a;) = a;. We then have H(a,b) =
H(a;,aj,bi,b;), and c(a) = c(a;,a;) from Equations 3
and 2.

We constrain x to represent an assignment. Write x;; in
place of z4,,;. We require > jTij = 1 for each 7. Futher-
more if we allow outliers as discussed in Section 4, then we
require ) Zull < K, where k is the maximum number of
outliers allowed. Using outliers does not increase the cost
in our problems, so this is equivalent to ), . u;1 = k-
Each of these linear constraints are encoded in one row of
A and an entry of b. Replacing H with a matrix having
entries Hyy, = H(a,b) and ¢ with a vector having entries
¢q = ¢(a). We can now write the IQP in matrix form:

min cost(z) =z’ Hzx + ¢’z subject to, (8)

Az =b, ze€{0,1}"

5.1. Approximation

Integer Quadratic Programming is NP-Complete, however
specific instances may be easy to solve. We follow a two
step process that results in good solutions to our problem.
We first find the minimum of a linear bounding problem, an
approximation to the quadratic problem, then follow local
gradient descent to find a locally minimal assignment. Al-
though we do not necessarily find global minima of the cost
function in practice the results are quite good.



We define a linear objective function over assignments
that is a lower bound for our cost function in two steps.
First compute g, as follows:

(o = min Z H,,xp, subject to, 9
b
Az =0b, x€{0,1}"
If x, represents o(i) = j then g, is a lower bound for
the cost contributed to any assignment by using o (i) = j.

min L(z) =Y (¢a + ca)za subjectto,  (10)
Az =b, z€{0,1}"

L(z) is a lower bound for cost(x) from Equation 8. This
construction follows [19], and is a standard bound for a
quadratic program. Of note is the operational similarity to
geometric hashing, with allowance for non-rigidity.

Equation 9 and 10 are both integer linear programming
problems, but since the vertices of the constraint polytopes
lie only on integer coordinates, they can be relaxed to linear
programming problems without changing the optima, and
solved easily. In fact due to the structure of the problems in
our setup they can be solved explicitly by construction. If
n is the length of x and m is the number of points in im-
age P, each problem takes O(nm log(m)) operations with
a very small constant. Computing ¢, fora = 1...n re-
quires O(n*mlog(m)) time.

We then perform gradient descent changing one element
of the assignment at each step. This takes O(n) operations
per step, and usually requires a very small number of steps
(we limit this to 100). In practice we can solve problems
with m = 50 and n = 2550, 50 possible matches for each
of 50 model points with outliers, in less than 2 seconds.

5.2. Warping

Once we have found a low distortion correspondence be-
tween points in two images we can define a smooth warp
between the images. We use regularized thin plate splines
[26] fit to the correspondences. The regularized thin plate
spline for a univariate function is modeled on the idea of
minimizing the bending energy of a thin plate deflected to
approximate some values. It is widely used for data inter-
polation.

6. Correspondence results

Given an image P of an object, and a target image (), pos-
sibly containing an instance of a similar object we find a
correspondence between the images as follows:

1. Extract sparse oriented edge maps from each image.

2. Compute features based on geometric blur descriptors
at locations with high edge energy.

3. Pick m of these features from P.

4. Allow each of the m feature points from P to poten-
tially match the n most similar points in () based on
feature similarity and or proximity.

5. Construct the cost matrices H and ¢ based on Section
4,

6. Approximate the resulting Binary Quadratic Optimiza-
tion to obtain a correspondence. Store the cost of the
correspondence as well.

7. Given the correpondence on m points extend to a
smooth map for other points in P using a regularized
thin plate spline.

See Figures 3 and 9 for a number of examples. In the left-
most column of the figure is the image P shown with m
points marked in color. In the middle left column is the
target image () with the corresponding points found using
our algorithm. A regularized thin plate spline is fit to this
correspondence to map the full set of feature points on the
object in P, shown in the middle right column, to the tar-
get, as shown on the far right column. Correponding points
are colored similarly and points are colored based on their
position (or corresponding position) in P.

7. Recognition Experiments

Our recognition framework is based on nearest neighbor.

e Preprocessing

1. For each object class we store a number of exem-
plars.

2. Possibly replicate the exemplars at different
scales.

3. Compute features for all of the exemplars as de-
scribed above.

o Indexing

1. For a query image, extract features as described
above

2. For each feature point in an exemplar, find the
best matching feature point in the query based on
normalized correlation of the geometric blur de-
scriptors. The median of these best correlations
is the similarity of the exemplar to the probe.

3. Form a shortlist of the exemplars with highest
similarity to the query image.

e Correspondence

1. Find a correspondence from each exemplar in
the shortlist to the query. Score these correspon-
dences by their cost.



2. Pick the exemplar with the least cost.

e Warping: If desired, construct a thin plate spline trans-
formation to warp other points on the exemplar to the
query image, or look for additional objects in the query
points not used by the correspondence.

We apply our technique to two different data sets, the
Caltech set of 101 object categories (available here [1]) and
a collection of news photographs containing faces gathered
from yahoo.com (provided by the authors of [5]). In the
experiments that follow, we utilize the same parameters for
both datasets except for those specifically mentioned.

For all images edges are extracted at four orientations
and a fixed scale. For the Caltech dataset where significant
texture and clutter are present, we use the boundary detector
of [20] at a scale of 2% of the image diagonal. With the
face dataset, a quadrature pair of even and odd symmetric
gaussian derivatives suffices. We use a scale of o = 2 pixels
and elongate the filter by a factor of 4 in the direction of the
putative edge orientation.

Geometric blur features are computed at 400 points sam-
pled randomly on the image with the blur pattern shown in
Figure 1. We use a maximum radius of 50 pixels (40 for
faces), and blur parameters « = 0.5 and 5 = 1.

For correspondence we use 50 (40 for faces) points, sam-
pled randomly on edge points, in the correspondence prob-
lem. Each point is allowed to match to any of the most simi-
lar 40 points on the query image based on feature similarity.
In addition for the caltech 101 dataset we use v = 0.9 al-
lowing correspondences with significant variation in scale,
while for the faces dataset we hande scale variation partly
by repeating exemplars at multiple scales and use v = 0.5.

8. Caltech 101 Results

Basic Setup: Fifteen exemplars were chosen randomly
from each of the 101 object classes and the background
class, yeilding a total 1530 exemplars. For each class, we
select up to 50 testing images, or “probes” excluding those
used as exemplars. Some of the classes have fewer than 65
elements, in which case we take as many as are available.
Results for each class are weighted evenly so there is no
bias toward classes with more images.

The spatial support of the objects in the exemplars is ac-
quired from human labeling. The shortlist results are shown
in Figure 4. The top entry in the shortlist is corect 41% of
the time. One of the top 20 entries is correct 75% of the
time.

Recognition and localization: Using each of the top
ten exemplars from the shortlist we find a good correspon-
dence in the probe image. We do this by first sampling 50
locations on the exemplar object and allowing each to be
matched to its 50 best matching possibilities in the probe

with up to 20% outliers. This results in a quadratic pro-
gramming problem of dimension 2550. We use a distortion
cost based mainly on the change in angle of edges between
vertices (v = 0.9). This allows matches with relatively dif-
ferent scales as shown in the Figure 9. Each exemplar is
rated by the resulting matching cost. The class of the best
exemplar based on correspondence cost gives 48% correct
classification. This is an increase over the best matching
exemplar not using correspondence (41%), and provides lo-
calisation of the object in the image that is approximately
correct in almost all cases when the probe is classified cor-
rectly.!

Multiscale: We compute exemplar edge responses and
features at a second scale for each exemplar resulting in
twice as many exemplars. This improves shortlist perfor-
mance by 1% or less, and does not change recognition per-
formance. This illustrates the lack of scale variation in Cal-
tech 101. The face dataset exhibits a large range of scale
variation.
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Figure 4: For a probe or query image exemplars are ranked ac-
cording to feature similarity. We plot the percentage of probes for
which an exemplar of the correct class was found in the shortlist.
Here the first exemplar is correct 41% of the time. Left Full curve.
Right Curve up to shortlist length 100 for detail.

9. Face Detection Results

We apply the same technique to detecting medium to large
scale faces for possible use in face recognition experiments.
The face dataset is sampled from the very large dataset
from [5] consisting of news photographs collected from ya-
hoo.com. A set of 20 exemplar faces split between frontal,
left, and right facing, was chosen from the database by
hand, but without care. We selected the testing set randomly
from the remaining images on which the face detector of
[21] found at least one large (8686 pixels or larger) face.
We use the generic object recognition framework described
above, but after finding the lowest cost correspondence we
continue to look for others. We generate an ROC curve
based on our match cost, and compare this to the ROC curve
for the detector of [21]. See figure 6. Our detector has an

For comparison our baseline experiments using 1-nn and color histor-
grams achieved 12% while 1-nn with ssd on greyscale images achieved
16%, comparable to the state of the art.
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Figure 5: The percentage of probes for which an exemplar of the
correct class was found in the shortlist. The blue curve shows per-
formance with hand segmented exemplars, the red Curve shows
performance with automatically segmented exemplars. For hand
segmented exemplars the first exemplar is correct 41% of the time,
for automatically segmented exemplars 45%.

advatage in generalization, while producing more false pos-
itives. While not up the the level of specialized face detec-
tors, these are remarkably good results for a face detector
using 20 exemplars and a generative model for classifica-
tion, without any negative training examples.

10. Automatic Model Building

In the recognition experiments above, exemplar objects
were hand segmented from their backgrounds. We now
show how these segmentations can be performed automa-
tially.

We exploit repetition of objects in the example images.
For a given exemple image we will identify the features that
are repeated in the same configuration in the other example
images. Ideally this would be computed for all images si-
multaneously. We show that in many cases it is sufficient to
find the similar parts in pairs of images independantly.

Starting with a set of example images {I;} from an ob-
ject class find the support of the object in an image I;, as
follows:

1. For each image I; where j # i :

(a) Find a correspondence from I, to I; 2

(b) Use a regularized thin plate spline to map all of
the feature points in I;, to I;

(c) Foreach mapped feature from I;,, the quality of
the match is the similarity to the best matching
nearby feature in /;.

2. The median quality of match for a feature is the mea-
sure of how common that feature is in the training im-
ages.

2Here we allow 40% outliers instead of 15% as used in the recognition
experiments.

In Figures 7 and 8 the points shown in color are those
with median quality within 90% of the best for that image.
Using this automatically estimated support we repeat the
recognition experiments in Section 8. The shortlist accu-
racy is actually better using the automatic segmentation, an
improvement of 1-4% for the top 10 entries, as can be seen
in Figure 5.

While the estimated support is not always intuitive,
recognition performance is very close to that using the same
techniques and hand segmented images, 48%. As can be
seen in figures7 and 8 the automatically estimated support
is often correct.

This is a very simple example of correspondence allow-
ing us to build models in object coordinates. The learned
models of support reflect a region of the image that is con-
sistent across training images, as opposed to individual dis-
criminative features.
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Figure 6: Top ROC curves for our face detector using 20 ex-
emplar images of faces (split between frontal and profile) and the
the detector of Mikolajczyk [21] (similar to that of [30]) evalu-
ated on a dataset of ap news photos. Mikolajczyk’s detector has
proven to be effective on this dataset [5]. Our detector works by
simply finding sets of feature points in an image that have a good
correspondence, based on distortion cost, to 20 exemplars. Good
correspondences allow detection and localization of faces using a
simple generative model based on nearest neighbor to 20 exem-
plars. No negative examples were used for our model. Bottom
Detections from our face detector marked with rectangles.



Figure 7: Training images for a class are shown at Left, the locations of the objects are not given. For each image the feature points
which are well registered by alignment ( as described in Section 10) are automatically extracted and marked in red at right The car class
shows an apparent failure as much of the background has been labeled as object, but significant portions of the background are actually
as consistent as the object itself! (Note images are in color for clarity, all computation is done on grayscale images.)



Figure 8: Training images for a class are shown at Left, the locations of the objects are not given. For each image the feature points
which are well registered by alignment ( as described in Section 10) are automatically extracted and marked in red at right . (Note images
are in color for clarity, all computation is done on grayscale images.)
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Figure 9: Each row shows a correspondence found using our technique described in section 5. Leftmost is an exemplar with some feature
points marked. Left center is a probe image with the correspondences found indicated by matching colors (all possible feature matches are
shown with white dots). All of the feature points on the exemplar are shown center right, and their image using a thin plate spline warp
based on the correspondence are shown in the right most image of the probe. Note the ability to deal with clutter (1,6), scale variation(3),
intraclass variation all, also the whimsical shape matching (2), and the semiotic difficulty of matching a bank note to the image of a bank
note painted on another object (5).
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