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Abstract. Human observers make a variety of perceptual inferences
about pictures of places based on prior knowledge and experience. In
this paper we apply computational vision techniques to the task of pre-
dicting the perceptual characteristics of places by leveraging recent work
on visual features along with a geo-tagged dataset of images associated
with crowd-sourced urban perception judgments for wealth, uniqueness,
and safety. We perform extensive evaluations of our models, training and
testing on images of the same city as well as training and testing on im-
ages of different cities to demonstrate generalizability. In addition, we
collect a new densely sampled dataset of streetview images for 4 cities
and explore joint models to collectively predict perceptual judgments
at city scale. Finally, we show that our predictions correlate well with
ground truth statistics of wealth and crime.

1 Introduction

Sense of place is a feeling or perception held by people about a location. It is
often used to refer to those characteristics that make a place unique or foster a
sense of belonging, but may also refer to characteristics that are not inherently
positive such as fear [31].

In this paper we apply computer vision techniques to predict human percep-
tions of place. In particular we show that – perhaps surprisingly – it is possi-
ble to predict human judgments of safety, uniqueness, and wealth of locations
with remarkable accuracy. We also find that predictors learned for one place
are applicable to predicting perceptions of other unseen locations, indicating the
generalizability of our models. Additionally, we explore models to jointly predict
perceptions coherently across an entire city. Finally, we also find good correla-
tions with ground truth statistics of crime and wealth when predicting on a more
densely sampled set of images.

The world, or even a single city, is a large continuous evolving space that
can not be experienced at once. The seminal work of Lynch, The Image of the
City [19] was influential in urban design and the approach of social scientists
to urban studies. Of course, collecting human judgments is a time consuming
and costly process. With accurate computational prediction tools, we could ex-
tend human labeled data of a place to nearby locations or potentially the entire
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Fig. 1. Our goal is to learn the human perception of safety, wealth, and uniqueness for
street level images. Human judgments agree that the image shown on the left is safer
than the image shown on the right.

world, thus enabling social scientists to better understand and analyze public
perceptions of places. Additionally, there are many potential applications of our
method such as answering important questions that people might have about
a place. For example, what areas should I avoid on my visit to NYC? In what
neighborhoods in Chicago might I like to buy a house? Which blocks of Boston
are the most unique?

Most computer vision algorithms related to places have focused on tasks like
scene classification, (e.g. [16, 26, 33, 29, 18]) or parsing scene images into con-
stituent objects and background elements (e.g. [30, 10, 15, 32]). But, places are
about much more than semantics. People perceive different qualities about a
place, e.g. whether it is a safe place, an interesting place, or a beautiful place.

These notions are related to recent work on attributes, especially on predict-
ing attributes of scenes [24]. Attributes such as scary, soothing, and stressful
in the SUN Attribute dataset [24] are related to perceptual characteristics of
safety, but are collected for a very different type of data. Our goal is somewhat
different; while the SUN Attribute dataset consists of general internet images
collected from Flickr, we look at streetview photos sampled densely across mul-
tiple cities (see Fig 2 for a comparison). In addition, past work on scene attribute
recognition predicts attributes of images independently for each image. We take
an approach that predicts attributes of all images within a location jointly using
a graph based framework. Since images taken in nearby locations usually have
similar perceptual characteristics this improves perceptual characteristic predic-
tion performance. Finally, we also look at predicting perceptions at a much larger
scale, e.g. on image sets spanning entire cities.

Our approach learns from a large data set collected by the Place Pulse
project [28]. This dataset consists of 2920 streetview images of NYC and Boston.
Ratings are collected from people regarding their perceptions of safety, unique-
ness, and wealth. We train models for both classification (Sec 4.2, predicting
e.g. which parts of a city are most or least safe), and regression (Sec 4.3, di-
rectly predicting perceptual ratings). Our quantitative evaluations demonstrate
reliable performance for both tasks when training and testing on images from
the same city. In addition, we experiment with training on images collected from
one city and testing on images of another city and show good generalizability.
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Place Pulse v1.0: Unsafe SUN Attributes: Scary 

Fig. 2. Left: Sample images of unsafe street images. Right: Sample scary images from
the SUN Attributes dataset [24]. Note, the distinct differences in types of image content
between the collections.

Qualitative results also show that our learned models can predict which neigh-
borhoods are most safe within a city. In addition to the original dataset, we
collect additional photos for prediction (Sec 3.2) by densely sampling streetview
images of NYC (8863 photos), and Boston (9596 photos), and 2 locations not in
the original dataset – Chicago (12502 photos) and Baltimore (11772 photos). Fi-
nally, we show that our predictions of safety correlate well with statistics about
crime and wealth in the 2 new cities, Chicago and Baltimore (Sec 6).

The main contributions of our paper are:

– Classification and regression models to predict human perceptions of the
safety, uniqueness, and wealth depicted in images of places.

– Models to jointly predict perceptual characteristics of entire cities.
– Experiments demonstrating that perceptual characteristics of places can be

predicted effectively when training and testing on the same city and when
training and testing on different cities.

– Maps visualizing perceptual characteristics densely predicted over cities.
– Experimental evidence showing correlation between perceptual predictions

and crime and wealth statistics.

2 Related Work

We discuss here several lines of research related to this work. We would also like
to acknowledge a few concurrent efforts in perceptual prediction using urban
data, most notably Naik et.al. [21], Arietta et. al. [2], Quercia et.al. [27] and
Khosla et. al [14].

Scene Recognition & Reconstruction: There has been a lot of progress
in scene recognition in recent years [16, 26, 33, 24]. However, this research has
mainly focused on scene categorization [16, 26, 33]. and recently on recognizing
attributes of scenes [24]. Our task is somewhat different, trying to estimate
human perceptions of place both of individual photos and in a coherent manner
across larger extents, such as across an entire city. Additionally, rather than
looking at all scene images, we focus on outdoor street level images of cities. For
this task, there seem to be strong visual cues related to our high level knowledge
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and experience with places. Content cues that may be related to perception of
place include paintings on the walls (certain types of graffiti), presence or absence
of green areas, presence of metallic fences and other objects, or amount and type
of clutter. Another area of research related to place looks at reconstructing 3d
models of scenes [1][9]. Recent methods operate at city scale. Our work could
help put a semantic layer on top of these efforts by adding perceptual information
to geometric models of places.

Geo-Locating Images One previous related computer vision application is
that of automatic image localization [11, 34]. The work of Hays and Efros [11]
uses a data-driven approach to predict image location (latitude and longitude)
based on a collection of millions of geo-tagged images from Flickr. Later work
from Zamir et.al [34] uses Google Street View images for this purpose. While
these methods attempt to guess where a picture was taken, we try to predict
aspects of the picture itself. In Hays and Efros [11] the authors also demonstrate
that other meta-information such as population and elevation can be estimated
based on geo-location predictions. Our work is similar in spirit in that we want
to predict meta-information about images, but computes the prediction directly
from the image content rather than using outside information such as elevation
or population maps.

Perceptual Tasks: There has been recent interest in the vision community on
predicting perceptual characteristics of images. Related tasks include predicting
the aesthetic quality of images [6][20][12], discovering mid-level representations
that are distinctive to a city [7] or to a style of object [17], and efforts to predict
the memorability of images [12]. The most relevant to our work is the aesthetics
task since it mimics the positive and negative nature of photos also present in
predicting the safety of a location. For aesthetics, various approaches have been
tried, including attribute based methods which train aesthetics classifiers based
on the outputs of individual high level attribute detectors [6]. Though attribute
based methods are intuitive, later work from Marchesotti et.al [20] found that
generic image descriptors in combination with appropriate encoding methods
can also produce state-of-the-art results. We use this insight to build our feature
representations using recent state of the art image descriptors, in particular fisher
vector (FV) encodings [25] and DeCAF convolution network based features [8].

3 Data

We use two main data sources in our work: a) the Place Pulse 1.0 dataset col-
lected by Salesses et.al [28] and labeled using crowdsourcing (Sec 3.1), and b) a
larger street view dataset we collected for this work (Sec 3.2).

3.1 Place Pulse 1.0

We use the publicly available images from the Place Pulse 1.0 dataset [28]. This
dataset contains 1689 streetview images sampled across New York City and
1231 images of Boston. For each image in the dataset the authors provide meta-
information related to location – geo-tags of latitude longitude – and camera
rotation information. Each image i also comes with aggregated human judgment
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Fig. 3. The left image shows the sampling locations for the Place Pulse v1.0 dataset and
the right image show the sampling locations of our unlabeled dataset for a zoomed-in
section of the Boston/Cambridge area.

scores of perceived safety (qi,s ∈ Qs), uniqueness (qi,u ∈ Qu) and wealth/class
(qi,w ∈ Qw). The locations in the dataset were randomly sampled across each
city, with the exception of some locations for which there are multiple different
views.

Perception scores for the 3 measures were collected via crowdsourcing using
a website created for this purpose. On this website, a user is presented with
two images side-by-side and asked to answer a relative perceptual judgment
question, e.g. “Which place looks safer?”. The user could select either the left
or right image or tie. The goal of this project was to compute 3 scores for each
image in the dataset Qs = {qi,s}, Qu = {qi,u}, Qw = {qi,w} corresponding
to safety, uniqueness, and wealth respectively. Due to practical considerations
(limited numbers of users), not all possible pairs of images for a given city could
be directly compared. Instead, the authors merged the pairwise rankings into
an overall ranking by taking into account the relative judgments of the images
against which each image was compared. This problem is a direct analog to the
notion of “strength of schedule” [23] in sport matches.

Perceptual scores qi,k for perception type k ∈ {s, u, w} for image i are:

qi,k =
10

3
(Wi,k +

1

wi,k

wi,k∑
j1=1

Wj1,k −
1

li,k

li,k∑
j2=1

Lj2,k + 1) (1)

Wi,k =
wi,k

wi,k + li,k + ti,k
, Li,k =

li,k
wi,k + li,k + ti,k

(2)

Where the counts wi,k, li,k, ti,k denote the number of times the image i won,
lost, or tied compared to other images for perception metric k. The constant
( 10

3 ) was selected so that the output scores fall in the range 0− 10.

3.2 External Dataset

We additionally collect a much larger dataset of geo-tagged images for New York
(8863 images) and Boston (9596 images), as well as for two new cities, Baltimore
(11772 images) and Chicago (12502 images). To collect this dataset, we use the
Google Street View API to sample images from random locations within the
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boundaries of each city. To provide a better idea of the scale and coverage of
our extended dataset, in Figure 3 we show side by side sampled locations for a
zoomed-in area of Boston from the Place Pulse 1.0 dataset (left) and our more
densely sampled dataset (right). This denser sampling will allow us to generate
urban perception maps and analysis at more detailed resolutions.

4 Predicting Urban Perceptions

We model and evaluate prediction of urban perceptions in two tasks, as a classi-
fication problem (Section 4.2), and as a regression problem (Section 4.3). First
we describe the image representations used in these tasks (Section 4.1).

4.1 Image Representation

Since the seminal work of Oliva and Torralba on modeling the spatial envelope
of the image [22], there have been several proposals for scene representations
that leverage spatial information. The recent work of Juneja et. al. [13] presents
a benchmark of several scene representations, including both low-level feature
representations and mid-level representations. They find that using low-level
features with rich encoding methods like Fisher vectors [25] can produce state-
of-the-art results on challenging scene recognition problems.

For our work we evaluate three feature representations: Gist [22], SIFT +
Fisher Vectors [25], and the most recent generic deep convolutional activation
features (DeCAF) of Donahue et. al. [8]. For SIFT-FV we compute the SIFT
features densely across five image resolutions, then perform spatial pooling by
computing the FV representations on a 2x2 grid over the image and for the
whole image. We build a visual dictionary with 128 components using Gaussian
Mixture Models. Additionally, we use the rootSIFT variant and adopt other
recommendations from Chatfield et. al. [4]. For the DeCAF features we use the
output of the sixth convolutional layer in the neural network.

4.2 Classification

We set up the classification problem protocol in a similar manner to that used in
image aesthetics tasks [20, 5, 6], where one tries to discriminate between images
with high perceptual scores from images with low perceptual scores (commonly
used in perceptual tasks since the scores of images middling perception values
may not be stable across people). For classification, we define the binary labels
yi,k ∈ {1,−1} for both training and testing as:

yi,k =

{
1 if rank(qi,k) in the top δ%
−1 if rank(qi,k) in the bottom δ%

(3)

We parameterize the classification problem by a variable δ and calculate
performance as we adjust δ. As we move the value of our parameter δ the problem
becomes more difficult since the visual appearance of the positive and negative
images starts to become less evident up to the point when δ = 0.5. At the same
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Fig. 4. Each figure shows the mean accuracy of the classification for different values
of the δ parameter. The blue line represents performance reported on images from the
same city as the training data. The red line represents the performance reported on
images from a different city than those used for training.

time when δ has smaller values the positive and negative images are easier to
classify but we have access to less data.

We learn models to predict yi,k from input image representations xi using
an `2-regularized with a squared hinge-loss function linear SVM classifier:

ŷi,k = sgn(wᵀ
kxi) (4)

wk = arg min
∗
wk

1

2

∗
w

ᵀ

k

∗
wk + c

n∑
i=1

(max(0, 1− y̆i,k
∗
w

ᵀ

kx̆i))
2 (5)

Where we set the regularization parameter c using held-out data and learn wk

using training data {x̆i, y̆i,k}.
We examine two scenarios: a) training and testing perceptual prediction mod-

els on images from the same city, and b) training models on images from one
city and testing on images from another city. We show some qualitative results
of perceptual image classification in Figure 5.

We report classification performance on the Place Pulse dataset [28] in Fig-
ure 4 as mean average AUC, with error bars computed over 10 random splits
for the SIFT + FV features. We performed the same analysis using Gist and
DeCAF features and found them to be nearly on par for this task. Classification
is evaluated for several values of δ, ranging from δ = 0.05 to δ = 0.5. The blue
line in each plot represents accuracies for the scenario where we train and test
on images from the same city. The red line in each plot represents accuracies for
the scenario in which we train on one city and test on another city. For instance,
the blue line in the top left plot in Figure 4 shows results for classifying images
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City: New York City
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Fig. 5. Classification predictions on a our large densely sampled external dataset of
street images of New York City. We show the images predicted as high and low – safety,
uniqueness, wealthiness – at the top and the bottom respectively.

of New York City as {highly safe vs highly unsafe} using images of New York
City as training data. The red line in the same plot corresponds to results of
classifying images of Boston as {highly safe vs highly unsafe} using images of
New York City as training data. The performance for training on one city and
testing on another is slightly lower than training and testing on the same city,
but reaches nearly the same performance for larger values of δ.

Several conclusions can be drawn from these plots. The first is that we can
reliably predict the perceptual characteristics of safety, uniqueness, and wealth
for streetview images. The second is that that uniqueness [U] seems to be the
most difficult task to infer using our feature representations. This might be due
to the more subjective definition of uniqueness.

We also find that we can train perceptual models on one city and then use
them to reliably predict perceptions for another city, indicating the generaliz-
ability of our models to new places. This is important since our ultimate goal
is to apply these methods to cities across the globe and collecting training data
for every city in the world would be infeasible. Finally, we find that predicting
characteristics like uniqueness may be easier for some cities than for others, ie
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Fig. 6. Regression predictions of safety for a previously unseen city. Here models are
trained on images from Boston and New York City from the Place Pulse v1.0 dataset
and predictions are performed on a large newly collected streetview dataset of Chicago.

training uniqueness models on Boston and predicting on New York has better
performance than training on Boston and testing on Boston.

4.3 Regression

We also study perceptual characteristic prediction as a regression problem, where
we want to predict aggregated human scores, defined in Eq. (1), using linear re-
gression. Here, our ground truth labels are yi,k = qi,k for image i and perceptual
measure k. Therefore, we make predictions ŷi,k as follows:

ŷi,k = wᵀ
kxi (6)

wk = arg min
∗
wk

1

2

∗
w

ᵀ

k

∗
wk + c

n∑
i=1

(max(0, |y̆i,k −
∗
w

ᵀ

kx̆i| − ε))2 (7)

Where we optimize the squared loss error on the predictions subject to an `2
regularization on the parameters. We optimize for the regularization parameter
c on held-out data and learn wk using training data {x̆i, y̆i,k}.

Regression results for predicting safety, uniqueness, and wealth are presented
in Table 1, computed over 10 folds of the data for Gist, SIFT-FV and DeCAF im-
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Test on New York Test on Boston

Training data Metric Gist FV DeCaf Gist FV DeCaf

New York

Safety 0.6365 0.6869 0.6808 0.6412 0.6566 0.7008

Uniqueness 0.5265 0.5168 0.5453 0.4978 0.4358 0.5186

Wealth 0.6149 0.6468 0.6478 0.5715 0.6001 0.6608

Boston

Safety 0.5972 0.6202 0.6362 0.6710 0.6740 0.7180

Uniqueness 0.4474 0.3767 0.4596 0.5203 0.4941 0.5471

Wealth 0.5640 0.5555 0.6015 0.5916 0.6419 0.6782

Table 1. Results on the original Google Street View images from from the PlacePulse
dataset (2011). We report the Pearson product-moment correlation coefficient r for the
predicted regression values as compared to human perceptual scores for several training
and testing data scenarios.

Test on New York Test on Boston

Training data Metric Gist FV DeCaf Gist FV DeCaf

New York

Safety 0.5436 0.5890 0.5603 0.5165 0.5275 0.5578

Uniqueness 0.4388 0.4510 0.4449 0.4072 0.3598 0.4363

Wealth 0.5328 0.5659 0.5518 0.4698 0.4949 0.5631

Boston

Safety 0.5062 0.4895 0.5211 0.5531 0.5839 0.5757

Uniqueness 0.4023 0.3479 0.4158 0.4208 0.3712 0.4527

Wealth 0.4972 0.4801 0.5173 0.5238 0.5367 0.5863

Table 2. Generalization of the PlacePulse annotations on updated Google StreetView
images (2013). We report the Pearson product-moment correlation coefficient r for the
predicted regression values as compared to human perceptual scores for several training
and testing data scenarios.

age descriptors. As in our classification experiments, we examine two scenarios:
training and testing on the same city, and training on one city and testing on a
different city. We find that our models are able to predict perceptual scores well,
with r-correlation coefficients ranging from 0.4 to 0.7. Again we find uniqueness
to be the most challenging perceptual characteristic for prediction. Here DeCAF
features provided the highest generalization performance when testing on data
from a different city. We show some qualitative results across the spectrum of
predicted scores for the city of Chicago in Figure 6 (Note we did not have im-
ages of Chicago available for training). We additionally show prediction scores
for several metrics on a map in Figure 8.

Generalization across time: The original PlacePulse dataset annotations
were collected in 2011 with the available Google Street View images at that time.
We additionally downloaded updated images for the same locations and views,
most of which were taken in 2013. We run the same regression experiments on
this set of images using the original perceptual scores as labels and show results
in Table 2. We find that even though performance drops somewhat we are still
able to learn representative and reasonably accurate models for each concept.
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Fig. 7. The input map on the left are isolated predictions of perceptual safety for
New York City. The next two images are joint predictions of safety/unsafety using our
collective model with different smoothing parameters.

5 Collective Urban Perception

In the previous models, prediction for classification and regression was performed
independently for each image. However, images of a place are not independent.
The safety of one city block is tightly correlated with the safety of the next
block down the street. In this section, we explore models for collective inference of
perceptual characteristics within a city. In particular, we model a city as a graph
where each node ni ∈ N is represented by a set of variables {pi = (lati, loni), xi}
where pi is a latitude-longitude coordinate and xi is the feature representation
for the image. We connect the nodes in the graph to define the edge set E by
associating each node ni with its closest K neighbors based on the euclidean
distance between pairs of node coordinates (pi, pj). For our experiments we use
a connectivity factor of K = 10.

Now, let’s say our goal is to label every node in the graph as unsafe or not.
We first define unsafe as any point in our training data that has an image with
a perceptual score qi,s in the bottom 25% of the training set. We set our goal to

predict a joint labeling Ŷ = {yi} that maximizes:

Ŷ = arg max
Y

∏
i

Φ1(yi|xi, ws)
∏

i,j∈E
Φ2(yi, yj |xi, xj , pi, pj , α1, α2) (8)

− lnΦ1 = yiw
ᵀ
sxi (9)

− lnΦ2 =

(
α1

‖xi − xj‖
+

α2

‖pi − pj‖

)
· 1[yi = yj ] (10)

Where the unary potentials parameter ws is based on our regression model
(Section 4.3). The pairwise potentials for smoothing are based on two criteria:
Visually similar images should be encouraged to take the same label, and im-
ages that are spatially close to each each other should be encouraged to take
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a. Safety scores [s] b. Predicted safety scores c. Predicted safety scores with a model 

trained on images of Boston.

c. Wealthy scores [w] d. Predicted wealthy scores e. Predicted wealthy scores with a model 

trained on images of New York City.

Fig. 8. Regression results scaled and shown as a heatmap for all the point locations
in the Place Pulse Dataset. Left column shows ground truth scores, middle column
shows predictions from the regression model, and right column shows predictions of
the regression model when trained on a different city.

the same label. This global optimization is in general difficult, but because we
are using submodular potentials we can optimize this in polynomial time using
Graphcuts [3].

We use this model to jointly predict perceptual scores for least safe, unique,
and wealthy images coherently across all images in New York City. Results for
average f1-scores computed over 10 folds (with line search to tune parameters
α1 and α2) are shown in Table 3 for both the SIFT-FV and DeCAF features. To
reduce correlations between images used in training and testing we select train-
test splits of the data by clustering the data points using k-means on image
coordinates (k = 10). Each cluster is used as the test data for one fold and the
rest of the images are used for training.

We find a positive improvement for predicting the ground-truth binary labels
jointly rather than independently for predictions of least safe and least unique
places. For predicting which images are not wealthy we don’t find any improve-
ment, perhaps indicating that wealthiness is more localized.

On the qualitative side we now have, akin to foreground-background segmen-
tation, a model that can produce arbitrarily dense or sparse region representa-
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¬Safe ¬Unique ¬Wealth

Isolated prediction [SIFT + FV] 0.6077 0.4420 0.5755

Isolated prediction [DeCAF] 0.5929 0.4652 0.5613

Collective prediction [SIFT + FV] 0.6069 0.4457 0.5700

Collective prediction [DeCAF] 0.6089 0.4777 0.5545

Table 3. F1-scores for predicting perceptions of least safe, least unique and least
wealthy places using isolated predictions and our collective unsafety prediction model.

Fig. 9. Large scale experiments: Left map represents predictions on the original Place
Pulse dataset for New York, Right map shows the result of applying classification
models to our more densely and broadly sampled data.

tions of safe/unsafe areas depending on the parameter choice of the pairwise
potentials. We show some results to this effect in Figure 7. From these maps, we
can see a birds eye view of which parts of New York City are most safe or unsafe.
If we use less smoothing we can see more fine-grained predictions of safety at
the neighborhood level. Notably the blue area includes Manhattan and certain
neighborhoods in Brooklyn and Queens like Park Slope and Forest Hills which
are known to be particularly safe areas of these boroughs.

6 Additional Experiments and Results
Large Scale Experiments on Unlabeled data: So far, we have been eval-
uating our models on the Place Pulse v1.0 dataset, but we have also collected a
much larger, densely sampled dataset of the original two cities (New York City
and Boston) and two new cities (Baltimore and Chicago). Therefore, we run
our models on these datasets as well. In Figure 9 we show predictions on our
New York City dataset compared to the original samples from Place Pulse. Our
dataset contains not only denser sampling, but also areas that were not present
in the original study. For instance we include samples from extended areas like
the Bronx. Figure 9 shows qualitative results for perceptions of wealth for the
Bronx using our predicted scores. The results seem to confirm anecdotal evi-
dence of affluence of certain areas in the Bronx such as Riverdale or Country
Club, both upper middle class neighborhoods1.

Correlation of our models with crime statistics: The authors of the
Place Pulse dataset found that human perception judgments are informative

1 http://en.wikipedia.org/wiki/Riverdale, Bronx and
http://en.wikipedia.org/wiki/Country Club, Bronx
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a. The map on the left shows household income statistics, 
the map on the right shows our predicted scores.

b. The map on the left shows homicide statistics, the map 
on the right shows our predicted safety scores.

Fig. 10. The pair of maps on the left showcase the positive correlation between house-
hold income statistics and our predicted perceptual scores of wealthiness. The pair of
maps on the right showcase the negative correlation between homicide statistics and
our predicted perceptual scores of safety.

about crime statistics of homicides for New York City. We go further, predict-
ing safety, wealth, and uniqueness on two cities for which we have no ground
truth perceptual judgments. We compute correlations between our predictions
and reported statistics of homicides and household income per county2. We
aggregate our predictions over counties and compare to reported statistics in
Figure 10. We find a moderate positive Pearson-correlation coefficient of 0.51
between Baltimore household income and our predictions of wealth. In Fig-
ure 10a we observe good predictions for the two wealthiest counties in Baltimore,
but miss a third cluster in South Baltimore. We also find a moderate negative
Pearson-correlation coefficient of −0.36 between homicide statistics and our pre-
dictions of safety (Figure 10b). If we restrict our analysis to counties for which
we have a larger number of sample images n then we obtain stronger correla-
tions: [0.53 (n > 200), 0.61 (n > 300) for income/wealth predictions and [−0.41
(n > 200),−0.47 (n > 300)] for crime/safety predictions (by even denser sam-
pling we could potentially extend this to all locations). For Chicago we find
weaker correlation coefficients of 0.32 for wealth and -0.21 for safety when com-
pared to similar statistics.

7 Conclusions

In this paper we have shown that visual models can predict human perceptions
of place. In particular, we demonstrated experimental evaluations for classifi-
cation and regression predictions of safety, uniqueness, and wealth. We also
produced models for joint prediction of perceptual characteristics. Finally, we
demonstrated uses of our model for predicting perceptual characteristics at city
scale and confirmed our findings for novel cities through correlations with crime
statistics. These findings take us one step toward understanding sense of place.

Acknowledgments: This work was funded in part by NSF Awards 1445409
and 1444234.

2 Data obtained from the Baltimore City Health Department 2011 report and from
http://www.robparal.com/ for Chicago
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